skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zumbrun, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Extending the work of Yang–Zumbrun for the hydrodynamically stable case of Froude number$$F<2$$ F < 2 , we categorize completely the existence and convective stability of hydraulic shock profiles of the Saint Venant equations of inclined thin film flow. Moreover, we confirm by numerical experiment that asymptotic dynamics for general Riemann data is given in the hydrodynamic instability regime by either stable hydraulic shock waves, or a pattern consisting of an invading roll wave front separated by a finite terminating Lax shock from a constant state at plus infinity. Notably, profiles, and existence and stability diagrams, are all rigorously obtained by mathematical analysis and explicit calculation. 
    more » « less
  2. In an interesting recent analysis, Haragus–Johnson–Perkins–de Rijk have shown modulationalstability under localized perturbations of steady periodic solutions of the Lugiato–Lefeverequation (LLE), in the process pointing out a difficulty in obtaining standard “nonlinear dampingestimates” on modulated perturbation variables to control regularity of solutions. Here, we point outthat in place of standard “inverse-modulated” damping estimates, one can alternatively carry outa damping estimate on the “forward-modulated” perturbation, noting that norms of forward- andinverse-modulated variables are equivalent modulo absorbable errors, thus recovering the classicalargument structure of Johnson–Noble–Rodrigues–Zumbrun for parabolic systems. This observationseems of general use in situations of delicate regularity. Applied in the context of (LLE), it gives thestronger result of stability and asymptotic behavior with respect to nonlocalized perturbations. 
    more » « less
  3. Kevin Zumbrun (Ed.)
    We study for the Richard-Gavrilyuk model of inclined shallow water flow, an extension of the classical Saint Venant equations incorporating vorticity, the new feature of convective-wave solutions analogous to contact discontinuitis in inviscid conservation laws. These are traveling waves for which fluid velocity is constant and equal to the speed of propagation of the wave, but fluid height and/or enstrophy (thus vorticity) varies. Together with hydraulic shocks, they play an important role in the structure of Riemann solutions. 
    more » « less
  4. We introduce a new approach to the study of modulation of high-frequency periodic wave patterns, based on pseudodifferential analysis, multi-scale expansion, and Kreiss symmetrizer estimates like those in hyperbolic and hyperbolic-parabolic boundary-value theory. Key ingredients are local Floquet transformation as a preconditioner removing large derivatives in the normal direction of background rapidly oscillating fronts and the use of the periodic Evans function of Gardner to connect spectral information on component periodic waves to block structure of the resulting approximately constant-coefficient resolvent ODEs. Our main result is bounded-time existence and validity to all orders of large-amplitude smooth modulations of planar periodic solutions of multi-D reaction diffusion systems in the high-frequency/small wavelength limit. 
    more » « less
  5. We establish an instantaneous smoothing property for decaying solutions on the half-line \begin{document}$$ (0, +\infty) $$\end{document} of certain degenerate Hilbert space-valued evolution equations arising in kinetic theory, including in particular the steady Boltzmann equation. Our results answer the two main open problems posed by Pogan and Zumbrun in their treatment of \begin{document}$ H^1 $$\end{document} stable manifolds of such equations, showing that \begin{document}$$ L^2_{loc} $$\end{document} solutions that remain sufficiently small in \begin{document}$$ L^\infty $$\end{document} (i) decay exponentially, and (ii) are \begin{document}$$ C^\infty $$\end{document} for \begin{document}$$ t>0 $$\end{document}, hence lie eventually in the \begin{document}$$ H^1 $$\end{document}$ stable manifold constructed by Pogan and Zumbrun. 
    more » « less
  6. For strong detonation waves of the inviscid Majda model, spectral stability was established by Jung and Yao for waves with step-type ignition functions, by a proof based largely on explicit knowledge of wave profiles. In the present work, we extend their stability results to strong detonation waves with more general ignition functions where explicit profiles are unknown. Our proof is based on reduction to a generalized Sturm-Liouville problem, similar to that used by Sukhtayev, Yang, and Zumbrun to study spectral stability of hydraulic shock profiles of the Saint-Venant equations. 
    more » « less